Wetenschappelijke publicatie

Global fine-mode aerosol radiative effect, as constrained by comprehensive observations

CE Chung, J-E Chu, Y Lee, T van Noije, H Jeoung, K-J Ha, M Marks

Aerosols directly affect the radiative balance of the Earth through the absorption and scattering of solar radiation. Although the contributions of absorption (heating) and scattering (cooling) of sunlight have proved difficult to quantify, the consensus is that anthropogenic aerosols cool the climate, partially offsetting the warming by rising greenhouse gas concentrations. Recent estimates of global direct anthropogenic aerosol radiative forcing (i.e., global radiative forcing due to aerosol–radiation interactions) are −0.35 ± 0.5 W m−2, and these estimates depend heavily on aerosol simulation. Here, we integrate a comprehensive suite of satellite and ground-based observations to constrain total aerosol optical depth (AOD), its fine-mode fraction, the vertical distribution of aerosols and clouds, and the collocation of clouds and overlying aerosols. We find that the direct fine-mode aerosol radiative effect is −0.46 W m−2 (−0.54 to −0.39 W m−2). Fine-mode aerosols include sea salt and dust aerosols, and we find that these natural aerosols result in a very large cooling (−0.44 to −0.26 W m−2) when constrained by observations. When the contribution of these natural aerosols is subtracted from the fine-mode radiative effect, the net becomes −0.11 (−0.28 to +0.05) W m−2. This net arises from total (natural + anthropogenic) carbonaceous, sulfate and nitrate aerosols, which suggests that global direct anthropogenic aerosol radiative forcing is less negative than −0.35 W m−2.

Bibliografische gegevens

CE Chung, J-E Chu, Y Lee, T van Noije, H Jeoung, K-J Ha, M Marks. Global fine-mode aerosol radiative effect, as constrained by comprehensive observations
Journal: Atmos. Chem. Phys., Volume: 16, Year: 2016, First page: 8071, Last page: 8080, doi: 10.5194/acp-16-8071-2016

Niet gevonden wat u zocht? Zoek meer wetenschappelijke publicaties