Are observed/modelled ENSO teleconnections robust?

Andreas Sterl, Geert Jan v. Oldenborgh, Gerrit Burgers, Wilco Hazeleger

KNMI, De Bilt
ENSO = El Niño – Southern Oscillation

Source: NOAA
NINO-3 and SO indices
Correlation and Regression

Time series \(a(t) \) and \(b(t) \)

Covariance \(\sigma_{ab} = \langle a(t) \ b(t) \rangle \)

Variance \(\sigma_{aa} = \sigma_a^2 \)

Correlation \(\text{corr}(a,b) = \frac{\sigma_{ab}}{\sigma_a \sigma_b} \)

symmetric, independent of amplitude

Regression \(\text{regr}(a,b) = \frac{\sigma_{ab}}{\sigma_a^2} \)

unsymmetric, “change of \(b \) per unit change of \(a \)”
ERA-40
NINO3.4
Z_{500}
January
teleconnection robust
= teleconnection stationary
= correlation stationary
Concept - 1

\(p(t) \) – signal, \(N_{34}(t) \) – NINO\(_{3.4}\) index

\[r = \text{regr}(N_{34}, p), \quad c = \text{corr}(N_{34}, p) \]

\[p = r \cdot N_{34} + [p - r \cdot N_{34}] \]

\[= r \cdot N_{34} + \sigma_p \sqrt{(1-c^2)} \cdot \eta \]

\[\text{corr}(N_{34}, \eta) = 0, \quad <\eta> = 0, \quad \sigma_\eta = 1 \]
Concept - II

\[p = r N_{34} + \sigma_p \sqrt{1-c^2} \, \eta \]

draw \(\eta \in N(0,1) \Rightarrow \) synthetic series \(p_s \)
moving correlation: \(c(t) = corr(N_{34}, p_s)(t) \)
simulate PDF of \(\Delta c = c_{\text{max}} - c_{\text{min}} \)

Is observed \(\Delta c \) within PDF ?
Datasets

• **obs**: HadSLP1
• **reanalysis**: ERA-40
• **AGCM**: SPEEDY (20-member ensemble)
• **CGCM**: Challenge (62-member ensemble)
• **CGCM**: ECHAM5/MPI-OM (CONTROL + A2)
Area(signif > 0.9) = $A_{\text{sig}} = 9.2\%$
ERA-40 SLP - jan

$A_{\text{sig}} = 8.3\%$
Significance of changes in strength of ENSO-SLP teleconnections

SPEEDY
(Dis-)continuity in time
Obs:
- small A_{sig}

Speedy:
- large differences between members
- small A_{sig} for whole ensemble
- no month-to-month consistency

=> No change; teleconnection stationary
Challenge ensemble - I

<table>
<thead>
<tr>
<th></th>
<th>all members</th>
<th>1st 31 members</th>
<th>2nd 31 members</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1940 1940 2001</td>
<td>1940 1940 2001</td>
<td>1940 1940 2001</td>
</tr>
<tr>
<td>jan</td>
<td>39.0 16.6 6.5</td>
<td>25.9 23.3 7.8</td>
<td>25.8 19.2 7.1</td>
</tr>
<tr>
<td>feb</td>
<td>32.7 6.8 7.0</td>
<td>17.9 11.4 10.3</td>
<td>22.0 5.2 6.8</td>
</tr>
<tr>
<td>mar</td>
<td>28.7 16.2 10.8</td>
<td>39.9 11.7 7.0</td>
<td>13.2 13.0 8.6</td>
</tr>
<tr>
<td>apr</td>
<td>19.3 14.6 14.4</td>
<td>13.2 8.0 15.8</td>
<td>23.7 11.9 11.7</td>
</tr>
<tr>
<td>may</td>
<td>10.5 7.9 10.5</td>
<td>11.4 28.2 5.6</td>
<td>11.3 6.3 12.9</td>
</tr>
<tr>
<td>jun</td>
<td>21.9 31.6 9.9</td>
<td>17.1 31.3 8.7</td>
<td>14.6 20.2 13.0</td>
</tr>
<tr>
<td>jul</td>
<td>19.9 24.6 9.3</td>
<td>33.3 26.0 13.8</td>
<td>7.7 4.3 12.4</td>
</tr>
<tr>
<td>aug</td>
<td>23.6 14.1 6.0</td>
<td>35.0 11.0 14.1</td>
<td>12.5 11.3 12.2</td>
</tr>
<tr>
<td>sep</td>
<td>22.6 16.4 25.9</td>
<td>22.9 12.1 34.7</td>
<td>6.8 15.7 4.9</td>
</tr>
<tr>
<td>oct</td>
<td>7.3 10.2 10.1</td>
<td>8.2 6.7 11.1</td>
<td>3.9 7.4 6.2</td>
</tr>
<tr>
<td>nov</td>
<td>11.8 8.3 8.2</td>
<td>10.0 13.4 7.5</td>
<td>12.0 11.3 14.4</td>
</tr>
<tr>
<td>dec</td>
<td>12.7 27.9 5.4</td>
<td>16.6 30.2 3.4</td>
<td>5.5 5.0 10.2</td>
</tr>
</tbody>
</table>

Table 4: A_{sig} for z_{500} in the CCSM 1.4-ensemble. Statistically significant values ($> 18.5\%$, see Table 1) are in boldface.
Challenge ensemble - II

A_{sig} large, but ... larger for historical period than for future large differences between runs no month-to-month consistency

\Rightarrow no conclusive evidence
ECHAM5/MPI-OM ensemble
ECHAM5/MPI-OM ensemble

large A_{sig} values for SLP
small values for z_{500}
month-to-month consistency
largest changes over 21st century
differences between members

\Rightarrow changes in ENSO teleconnections possible
Conclusions

• obs: no change

• Speedy: no change
 (no consistency between month & members)

• Challenge: questionable

• ECHAM5: possible

• better diagnostics needed