Sources and fate of nitrogen oxides

Steffen Beirle, Ulrich Platt, Thomas Wagner

Satellite Group Mainz-Heidelberg
MPI Mainz
IUP Heidelberg

MAX-PANCK-GESELLSCHAFT
Sources and fate of nitrogen oxides

almost Everything has been said.

Keep your attention.
Tropospheric NO$_2$: The global picture

- For the first time ever!
- Meanwhile: >10 years, 4 satellite instruments
- Spatial resolution much better than global CTM/GCMs
Tropospheric NO$_2$: What can we learn?

- Check our understanding on emissions and chemistry of nitrogen oxides:
 - Where are the sources?
 - What is the strength of the different NO$_x$ sources?
 - Trends
 - Transport and deposition of NO$_x$ → Chemistry!
Tropospheric NO$_2$: **Restrictions**

- Stratospheric estimation
- Sensitivity, AMF
 - Albedo
 - Profile
 - Clouds & Aerosols
- Fixed local time
- Limited spatial resolution
Tropospheric NO$_2$: **How to use?**

- Comparisons/combinations with (inverse) models
 - Loss of spatial and temporal resolution
 - Resulting product: Model or measurement?

→ Gain as much info as possible from the meas.
Tropospheric NO$_2$: What will I talk about

- Present some studies on
 - Source identification & quantification
 - Estimating lifetimes
- This is a workshop:
 - Some questions
Sources of NO\textsubscript{x}

Mean tropospheric slant column density (TSCD) (SCIAMACHY 2003-now)

- Fossil fuel comb. 22 (13-31)
- Biomass burning 8 (3-15)
- Lightning 5 (2-20)
- Soil emissions 7 (4-12)

Tg [N]/year

(Lee et al. 1997)
Fossil fuel combustion

• >50%
• „Stationary“ sources (transport on prescribed tracks)
 → Constant spatial patterns
 – Cities
 – Power plants
 – Highways?
 – Ship tracks

• Characteristic temporal patterns:
 – Seasonal variations
 – Holidays, temporal regulations → Wang et al., 2007
 – Weekly cycle!
Fossil fuel combustion: **Ship emissions**

- High uncertainties: 3-7 Tg [N]/yr
- Up to 1/3 of total NO\textsubscript{x} emissions from combustion!
- Strong impact: low background NO\textsubscript{x}
- Probably strong increase during next decades
Fossil fuel combustion:

Ship emissions

a) Estimated NO\textsubscript{x} emissions based on **AMVER** (Endresen et al., 2003)

b) NO\textsubscript{2} TVCD GOME (Spring, Cloud free)

c) Meridional **high-pass** filtered TVCD

Beirle et al., 2004

→ *Richter et al., 2004*
Fossil fuel combustion: **Ship emissions**

AMVER ship traffic density

2003-2004 mean, Land masses masked

SCIAMACHY NO₂
Fossil fuel combustion: **Ship emissions**

- **AMVER ship traffic density**
 - 2003-2006 mean, 2D Highpass-filtered
 - Land masses masked

- **SCIAMACHY NO$_2$**
 - 2003-2006 mean, 2D Highpass-filtered
 - Land masses masked
Fossil fuel combustion: **Ship emissions**

- **Future:**
 - Better statistics, increasing ship emissions
 → more & clearer ship tracks
 - Interaction of ship emissions and sensitivity due to aerosols and clouds???
 - Check: 1+1=2?
 - Gaps???

2003-2006 mean, 2D Highpass-filtered
Land masses masked
Fossil fuel combustion: **Weekly cycle**

US Eastcoast

Europe

Tropospheric NO$_2$ mean vertical column density (GOME, 1996-2001)

Beirle et al., 2003
Fossil fuel combustion: **Weekly cycle**

Normalized weekly cycles of NO₂ for different parts of the world.
Fossil fuel combustion: **Trends**

- China: strong increase

Richter et al., 2005

→ *Van der A et al., 2006*
Fossil fuel combustion: **Trends**

- Narrow Swath: use GOME high resolution to reconstruct past spatial distribution!

→ **Beirle et al., Highly resolved global distribution of tropospheric NO\textsubscript{2} using GOME narrow swath mode data, Atmos. Chem. Phys., 4, 2004.**
Biomass burning

- Characteristics:
 - Seasonality
 - Indicator: Fire counts

 \[\rightarrow \text{Thomas et al., 1998} \]
 \[\rightarrow \text{Spichtinger et al., 2004} \]

- Problems:
 - Saturation
 - Aerosols!
 - Profiles!
 - Lifetime!
 - Different emission factors

\[\rightarrow \text{Very difficult to get quantitative!} \]
Soil emissions

• Triggered by rain
 → Strong temporal fluctuations

→ Jaegle et al., 2004
→ Ron
Lightning

• Importance:
 – UT: low background, long lifetime
 → Strong impact on UT ozone
 – High uncertainties!

• Characteristics:
 – Seasonality
 – Max. over tropical land masses

• Specific problems:
 – Profile?
 – UT: low NO₂/NOₓ
 – Clouds
Lightning

- Correlation of lightning and NO$_2$

Correlation of monthly mean **flashes** (LIS) and NO$_2$ (GOME) for Australia \Rightarrow 2.8 (0.8-14) Tg[N]/yr

Lightning

Boersma et al., 2005:
Correlation of GOME NO$_2$ and TM3 LNO$_2$:
1.1-6.4 Tg [N]/yr
Martin et al., 2007:
Comparison of
SCIAMACHY
NO$_2$
GEOS-Chem:
4-8 Tg [N]/yr
Lightning

Unresolved issues:
Lightning parameterizations don’t match Congo maximum!

Global Lightning Apr 1995-Feb 2003 LIS / OTD (NASA)

Central Africa:
• **Highest flash rate** globally
• **15%** of global flashes
→ **15%** of global LNO$_x$ production
• Upper bound: Don’t care (too much) about biomass burning...

• Rough estimate of LNO_x:
 - cloud free: <1.7 Tg N/yr (same assumptions as for Australia case study)

• Extrapolation not critical: 15% of global flashes!
• **Upper bound**: Don‘t care (too much) about biomass burning...

• **Rough estimate** of LNO$_x$:
 cloud free, same assumptions as for Australia case study

<1.7 Tg [N]/yr
Lightning: **Direct observation** of fresh LNO₅

Case study on August 30 2000 in the Gulf of Mexico
Lightning: **Direct observation** of fresh LNO$_x$

\[
V^{NO_x} = f \cdot S^{NO2}
\]

- Conversion factor depends on box AMF and NO$_2$ profile, i.e. LNO$_x$ profile and NO$_x$ partitioning:

\[
f = \frac{1}{\sum p_i^{NOx} \cdot l_i \cdot a_i}
\]

- a_i: Box Air Mass Factor (AMF)
- p_i: normalized NOx profile
- l_i: NO$_x$ partitioning $L = [NO_2]/[NO_x]$
\[f = \frac{1}{\sum p_i^{NOx} \cdot l_i \cdot a_i} \]

\[\Rightarrow V^{NOx} = f \cdot S^{NO2} \]

LNO\textsubscript{x} profile:
Cloud resolving models
Pickering et al. 1998
Fehr et al. 2004

NO\textsubscript{x} partitioning:
In-situ measurements in New Mexico for cb conditions
Ridley et al. 1994, 1996

Box AMFs:
(sensitivity)
RTM, cb conditions
Hild et al. 2002

\[\ldots = 4.02 \ (2.12-7.14) \]
Lightning: **Direct observation of fresh LNO\textsubscript{x}**

- 4 years of **SCIAMACHY** data
- 3 years of **WWLLN** data (global continuous ground based lightning counts)
- Automated search for „lightning events“ prior SCIAMACHY overpass:
 - grid WWLLN flash counts 5-10 local time on 1°x1° grid
 - mask pixels with >20 flashes („lightning pixel“)
 - identify clusters of connected lightning pixels with more than 200 flashes in total
 - keeping lightning clusters that are (partly) covered by SCIAMACHY
 - **1680 matches!!!**
Lightning

SCIAMACHY NO$_2$ for WWLLN lightning events 2004-2006

- local time 10 a.m. → almost all over ocean
- high fluctuations (logarithmic scale)
- low NO$_2$ signal
Lightning: Direct observation of fresh LNO$_x$

• What is different???
Lightning: Direct observation of fresh LNO$_x$

- **What is different???

Flashes on 2004/10/07 at 23:05 and 24h before

Flashes on 2005/03/05 at 23:21 and 24h before
Lightning

• What is the reason for the high variability in NO₂?
 – **No dependency** of NO₂ on
 • Flash counts
 • CTH
 • Flash time
 – **Regional differences!?**

• Where is the LNOₓ?
 – Gulf of Mexico case study: LNOₓ production at lower end!
 – observed NO₂ enhancement 1.6*10^{15} molec/cm²
 – expected: 2.5*10^{16} molec/cm²
 (250 mol per flash, conversion as in the Gulf of Mexico case study)
Lightning

Estimates of LNO_x from UV/vis sats

• 2.8 (0.8-14) Beirle et al., 2004
• 1.9 (0.5-9.5) Beirle et al., 2004 with updated global flash rate
• 1.1-6.4 Boersma et al., 2005
• 1.7 (0.6-4.7) Beirle et al., 2006
• 4-8 Martin et al., 2007
• <1.7 Congo cloud free
• ??? Direct SCIAMACHY obs.

→ What’s wrong?
Transport …

- BL: short lifetime of NO$_x$, moderate wind speeds
 - Annual mean NO$_2$ distribution reflects emissions
- Events of medium/longrange transports also happen
 - Wenig et al.,
 - Stohl et al.,
 - Talk by Mijling
... and **lifetime**

- Transport is determined by wind and lifetime
 - empirical analysis of transport holds information on lifetime
- Lifetime:
 - Hard to measure
 - Models: nonlinearity, coarse spatial resolution!
 - Necessary to estimate emissions from NO$_2$ columns
Lifetime: Simple estimates

Leue et al., 2001:
Mean lifetime ~ 24 hours

- Problems:
 - Multiple, extended sources
 - GOME pixel width (decrease in SCIAMACHY much steeper)
 → lifetime overestimated!
 - Mean(NO_2 * wind) \neq mean(NO_2) * mean(wind)
Lifetime: Simple estimates

Fit: $\tau = 4.2 \text{ h}$ – at 70°N!
Lifetime: Simple estimates

- **Ship tracks:** *(Beirle et al., 2004)*
 - Winds relatively stable
 - North-South: good GOME resolution
 - Remaining uncertainty due to daily variation of tau

Lifetime estimation:
- **2.3 hours** (summer)
- **5.1 hours** (winter)
Lifetime: Advanced estimates

- Model transport: FLEXPART
- Consider a point source: Riad
- Model spatial patterns for different lifetimes
Lifetime: Advanced estimates

Normalized sections of constant longitude (46° E) crossing Riad
Using wind data

General additive model:
Dependency of NO₂ TSCD on Wind direction

\[y = \mu + s_1(\theta_{wind}) + s_2(\text{day in year}) + \text{slope} \cdot t + s_3(\text{day in week}) \]

GOME-data 1996-2000, ECMWF wind data

M. Hayn, satellite Group Mainz-Heidelberg
Using wind data

- NO$_2$-plumes can be followed across the ocean
- determination of “influence zone”

GOME-data 1996-2000, ECMWF wind data

M. Hayn, satellite Group Mainz-Heidelberg
Using wind data: „Fluxes“

- „Flux“ of NO$_2$: Mean(NO$_2$ * wind)
- Quantify transport
- Ocean fertilization
- Lifetime

GOME-data 1996-2000,
ECMWF wind data

M. Hayn, satellite Group Mainz-Heidelberg

Preliminary
Using wind data: „Fluxes“

GOME-data 1996-2000, ECMWF wind data

M. Hayn, satellite Group Mainz-Heidelberg
Normalized seasonal weekly cycles of NO$_2$ for Germany

Lifetime: Weekly cycle again...

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>16.1</td>
<td>5.5</td>
<td>15.5</td>
<td>24.2</td>
</tr>
<tr>
<td>Po valley</td>
<td>11.2</td>
<td>8.8</td>
<td>12.6</td>
<td>11.3</td>
</tr>
<tr>
<td>US Eastcoast</td>
<td>11.6</td>
<td>11.2</td>
<td>23.8</td>
<td>33.2</td>
</tr>
<tr>
<td>LA</td>
<td>10.8</td>
<td>6.4</td>
<td>18.2</td>
<td>25.9</td>
</tr>
<tr>
<td>Japan</td>
<td>16.0</td>
<td>11.9</td>
<td>24.0</td>
<td>22.1</td>
</tr>
</tbody>
</table>

Measured lifetime, independent on models

Fossil fuel combustion: **Weekly cycle**

- **Fri / (Sun-Thu)**
- **Sat / (Mon-Fri)**
- **Sun / (Mon-Fri)**
- **Mon / (Tue-Fri)**
What comes next?

- Dealing with the open questions:
 - Clouds
 - Lightning NO\textsubscript{x}

- Ongoing measurements, GOME-2
- Different overpass times
- More and more use of spatial and temporal subsets (even on daily scale)
- Source identification: more+improved „trigger“
- More+improved external datasets
- Chemistry: combination with other trace gases: HCHO, CHOCHO, trop. O\textsubscript{3} etc.