Royal Netherlands Meteorological Institute; Ministery of Infrastructure and the Environment

Research
Regional Climate
Ice-sheets
RACMO for ice sheets

Application of RACMO to the world’s largest Ice Sheet masses of Greenland and Antarctica is only useful after adaption or extension of the model to be capable of simulating the specific conditions met in these regions. Substantial modifications include the implementation of a roughness formulation for snow and ice covered surfaces (Reijmer et al., 2004); a snow melt – refreezing module to simulate (sub)surface phase transitions in the marginal Greenland ablation zones (Ettema et al., 2009); and a snow drift module bring into account the release of extra latent heat in regions of wind induced blowing snow (Lenaerts et al. 2011).

Various polar versions of RACMO have been extensively evaluated and shown to reliably simulate the climate and surface mass balance (SMB) of the Antarctic Ice Sheet (AIS) and the Greenland Ice Sheet (GrIS) (Reijmer et al., 2005; Van de Berg et al., 2006; Lenaerts et al., 2011c; Ettema et al., 2009; 2010a; Agosta and others, 2011). Based on its performance, output of RACMO2 was used to:

  • Quantify the forcing of katabatic and barrier winds in Antarctica and Greenland (Van den Broeke and others, 2002; Van den Broeke and Van Lipzig, 2003a; Van Angelen and others, 2011a); this is illustrated for Greenland in Fig. 1
  • Identify interactions between the large scale atmospheric circulation and poleward moisture and heat transport (Van Lipzig and Van den Broeke, 2002; Van den Broeke and Van Lipzig, 2003b);
  • Assess the coupling between regional atmospheric circulations and sea ice transport through Fram Strait (Van Angelen and others, 2011b);
  • Assess atmospheric blocking in the Antarctic Peninsula region (Van Lipzig et al., 2008);
  • Create new maps and time series of the SMB of the AIS (Van Lipzig et al. 2004; Van de Berg et al., 2006; Lenaerts et al., 2011c) and GrIS (Ettema et al., 2009), identifying data-sparse regions on the AIS with very high and low accumulation rates (Van den Broeke et al., 2006a; 2006b), see Fig. 2.

Fig. 1. Vector average 10-m wind speed (arrows) and directional constancy (colours) over the Greenland ice sheet and surrounding oceans. Areas with high directional constancy are indicative of persistent, thermally driven regional circulations. Vectors are plotted every 9 model grid points. From Van Angelen and others (2011).

In combination with ice discharge data, RACMO2 provided SMB data to calculate ice mass balance time series for the AIS and GrIS and their recent contributions to sea level rise, including a partitioning of the mass fluxes (Van den Broeke et al., 2009; Rignot et al., 2008). High-resolution SMB results from RACMO2 are used for mass balance studies of individual glacier basins, as well as separate larger ice caps (Flade Isblink in northeast Greenland, Austfonna in Svalbard). RACMO2 is presently upgraded to the latest cycle of ECWMF physics and preparations are ongoing for coupling to a finite-element ocean model.

Fig. 2: RACMO2-simulated surface mass balance (SMB) of the AIS (left, 1989-2009, 27 km resolution) and the GrIS (right, 1989-2009, 11 km resolution) in kg m-2 yr-1.

References

Agosta, C., V. Favier, C. Genthon, H. Gallée, G. Krinner, J.T.M. Lenaerts, and .M.R van den Broeke, 2011: A 40-year accumulation dataset for Adelie Land, Antarctica, and its application in model validation, Climate Dynamics, in press
Ettema, J., M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. L. Bamber, J. E. Box and R. C. Bales, 2009: Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling, Geophys. Res. Lett. 36, L12501, doi:10.1029/2009GL038110.
Ettema, J., M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. E. Box, and K. Steffen, 2010: Climate of the Greenland ice sheet using a high-resolution climate model – Part 1: Evaluation, The Cryosphere 4, 511-527.
Ettema, J., M. R. van den Broeke, E. van Meijgaard and W. J. van de Berg, 2010: Climate of the Greenland ice sheet using a high-resolution climate model – Part 2: Near-surface climate and energy balance, The Cryosphere 4, 529-544.
Fettweis, X., M. Tedesco, M. R. van den Broeke and J. Ettema, 2010: Melting trends over the Greenland ice sheet (1958-2009) from spaceborne microwave data and regional climate models, Cryosphere Discuss. 4, 2433-2473.
Helsen, M. M., M. R. van den Broeke, R. S.W. van de Wal, W. J. van de Berg, E. van Meijgaard, C. H. Davis, Y. Li, I. Goodwin, 2008: Elevation changes in Antarctica mainly determined by accumulation variability, Science, doi: 10.1126/science.1153894, 1626-1629.
Lenaerts, J. T. M., M. R. van den Broeke, S. J. Déry, G. König-Langlo, J. Ettema, and P. Kuipers Munneke, 2010: Modelling snowdrift sublimation on an Antarctic ice shelf, The Cryosphere 4, 179-190.
Lenaerts, J. T. M., M. R. van den Broeke, W. J. van de Berg, E. van Meijgaard and P. Kuipers Munneke, 2011c: A new, high-resolution surface mass balance map of Antarctica (1989-2009) based on regional atmospheric climate modeling, Geophys. Res. Lett., submitted.
Reijmer, C. H., E. van Meijgaard and M. R. van den Broeke, 2004: Numerical studies with a Regional Atmospheric Climate Model based on changes in the roughness length for momentum and heat over Antarctica, Bound.-Layer Meteorol. 111, 313-337.
Reijmer, C. H., E. van Meijgaard and M. R. van den Broeke, 2005: Evaluation of temperature and wind over Antarctica in a regional atmospheric climate model, J. Geophys. Res. 110, D04103, doi:10.1029/2004JD005234.
Rignot, E., J. L. Bamber, M. R. van den Broeke, C. Davis, Y. Li, W. J. van de Berg, E. van Meijgaard, 2008b: Recent Antarctic mass loss from radar interferometry and regional climate modeling, Nature Geosc. 2, 106-110.
Van Angelen, J., M. R. van den Broeke and W. J. van de Berg, 2011a: Momentum budget of the atmospheric boundary layer over the Greenland ice sheet and its surrounding seas, J. Geophys. Res., submitted.
Van de Berg, W. J., M. R. van den Broeke and E. van Meijgaard, 2006: Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model, J. Geophys. Res. 111, D11104, doi:10.1029/2005JD006495.
Van den Broeke, M. R., N. P. M. van Lipzig and E. van Meijgaard, 2002: Momentum budget of the East-Antarctic atmospheric boundary layer: results of a regional climate model, J. Atmos. Sci. 59, 3117-3129.
Van den Broeke, M. R. and N. P. M. van Lipzig, 2003a: Factors controlling the near-surface wind field in Antarctica, Mon. Weather Rev. 131, 733-743.
Van den Broeke, M. R., W. J. van de Berg and E. van Meijgaard, 2006a: Snowfall in coastal West Antarctica much greater than previously assumed, Geophys. Res. Lett. 33, L02505, doi:10.1029/2005GL025239.
Van den Broeke, M. R., W. J. van de Berg, E. van Meijgaard and C. H. Reijmer, 2006b: Identification of Antarctic ablation areas using a regional atmospheric climate model, J. Geophys. Res. 111, D18110, doi:10.1029/2006JD007127.
Van den Broeke, M., J. Bamber, J. Ettema, E. Rignot, E. Schrama, W. J. van de Berg, E. van Meijgaard, I. Velicogna and B. Wouters, 2009: Partitioning recent Greenland mass loss, Science 326, 984-986.
Van Lipzig, N. P. M. and M. R. van den Broeke, 2002: A model study on the relation between atmospheric boundary-layer dynamics and poleward atmopsheric moisture transport in Antarctica, Tellus 54A, 497-511.
Van Lipzig, N. P. M., J. C. King, T. Lachlan-Cope, and M. R. van den Broeke, 2004: Precipitation, sublimation and snowdrift in the Antarctic Peninsula region from a regional atmospheric model, J. Geophys. Res. 109, D24106, doi:10.1029/2004JD004701.
Van Lipzig, N. P. M., G. J. Marshall, A. Orr, J. C. King, 2008: The relationship between the Southern Hemisphere annular mode and Antarctic Peninsula summer temperatures: analysis of a high-resolution model climatology, J. Climate 21, 1649–1668.
Last updated on 01 March 2011