Summary of the Polar Clouds Working Group

Hugh Morrison and James Pinto
Co-chairs

June 6, 2008, 4th Pan-GCSS meeting
Overview of the Breakout Sessions

• Review of current research related to polar clouds (13 talks)

• ~ 40 attendees

 o 4 talks on cloud observations, recent field campaigns
 o 2 talks on Arctic cloud-climate feedbacks
 o 2 talks on ice formation processes in mixed-phase clouds
 o 1 talk on parameterization development
 o 4 talks on modeling results from Mixed-Phase Arctic Cloud Experiment (MPACE)
• Description of 2 new case studies for model intercomparison
 o Kinematic 1-D microphysics tests (Ben Shipway)
 o Weakly-forced mixed-phase stratus from Surface Heat Budget of the Arctic Ocean (SHEBA) field experiment

• Discussion of the recently completed ARM/GCSS Mixed-Phase Arctic Cloud Experiment (MPACE) model intercomparison and other modeling studies
Mixed-Phase Arctic Cloud Experiment

• M-PACE took place at ARM’s Barrow site in October 2004 (Verlinde et al. 2007)

• M-PACE featured numerous aircraft flights that measured clouds and aerosols among other increased observations

• A variety of cloud types were observed

 A – multi-layer stratus
 B – boundary layer stratocumulus
 C – frontal clouds
• Focus on weakly-forced mixed-phase clouds
 o Prevalence in Arctic
 o Large impact on radiative forcing and surface energy budget
 o Climate and weather models have had difficulty correctly simulating them

% of clouds retrieved as mixed-phase during SHEBA

Shupe et al. 2006
Cloud and radiative flux differences (2007-2006)

CloudSat/CALIOP Cloud Fraction

Downwelling SW Radiation (W m\(^{-2}\))

Downwelling LW Radiation (W m\(^{-2}\))

Western Arctic: -16%

Western Arctic: + 32 W m\(^{-2}\)

Western Arctic: - 4 W m\(^{-2}\)

From J. Kay
Results from the ARM/GCSS MPACE model intercomparison

- First such model intercomparison undertaken by Polar Cloud Working Group

- Results for Period B and A (Klein et al. 2008, Morrison et al. 2008, QJRMS, submitted)

- Model participation:
 - Period B - 17 SCMs and 9 CRMs
 - Period A – 14 SCMs and 4 CRMs
Period B (single-layer cloud)

- Models tend to underestimate liquid water path, overestimate ice water path, but there is a lot of scatter (no consistent diff. between LES/CRM and SCMs).

Figure from G. De Boer
Figure from S. Klein

Surface downward longwave radiation

\[(W \text{ m}^{-2}) \]

Condensate water path

\[(g \text{ m}^{-2}) \]
Figure from S. Klein

no-ice simulation liquid water path (g m⁻²)

control condensate water path (g m⁻²)
Period A (multi-layer cloud)

• In contrast to Period B, models tend to overestimate liquid water path, underestimate ice water path, but again there is a lot of scatter.

• Results suggest differences in model’s ability to simulate low-level single-layer clouds versus deeper multi-layer clouds.

• Some evidence that increasing complexity of microphysics parameterization improved results in both Periods A and B, but lots of scatter and physical mechanisms for this are
• Importance of ice phase microphysics in weakly-forced mixed-phase clouds, especially ice initiation processes.

• Large discrepancy between observed ice nuclei and crystal concentration – not explained by any quantified ice formation mechanisms.
Early results from the April 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC)

PIs Greg McFarquhar, Steve Ghan, Hans Verlinde
(presented by M. Dubey)

• Most comprehensive set of in-situ microphysical measurements ever taken in Arctic clouds

• Goals are to provide new insights on ice formation and cloud-aerosol interaction in mixed-phase clouds
M-PACE October 2004

- Pristine Conditions
 - Open ocean
 - Few cloud droplets
 - Ice multiplication
 - Precipitation
- Measurements by ~10 instruments
 - aerosol properties
 - cloud microphysics
 - atmospheric state.

ISDAC April 2008

- Polluted Conditions
 - Sea Ice
 - Many cloud droplets
 - Ice nucleation
 - Little precipitation
- Measurements by ~40 instruments
 - aerosol properties
 - cloud microphysics
 - radiative energy
 - atmospheric state.
1-D kinematic mixed-phase microphysics test (Ben Shipway)

- Basic idea is to test microphysics schemes in a simplified framework with specified dynamics, allows for testing of microphysics in the absence of feedbacks with dynamics

- 1D column with specified vertically- and temporally-varying vertical velocity to mimic updraft/downdraft cycle of large eddy in stratocumulus
SHEBA mixed-phase stratus model intercomparison case

• Long-lived low-level mixed-phase stratus were observed during early May, focus is on May 7, 1998

• Several key differences from MPACE cases:
 o Colder temperatures (~ -22 C vs. -15 C)
 o Much smaller surface turbulent heat fluxes (ice-covered vs. open ocean)
 o More polluted aerosol
 o Much smaller amounts of cloud liquid water

• Intercomparison being conducted jointly with July 2008 WMO Cloud Modeling Workshop in Mexico
Broader outlook/questions

• Focus has been on mixed-phase clouds, future cases on ice-phase (diamond dust)?

• Bias toward evaluation of models based on point measurements in western Arctic - new satellite tools and observation ground sites