Nieuwsbericht

Hoeveel meer regen gaat de toekomst brengen?

13 september 2017

Door de opwarming van de aarde neemt de hoeveelheid waterdamp in de atmosfeer toe met ongeveer 7% per graad. Volgens onze berekeningen met klimaatmodellen neemt de neerslag echter maar toe met 2% per graad opwarming (Figuur 1 hieronder). Hoe zit dat?

Alle regen in een jaar wereldwijd opgeteld bedekt de aarde met een laag water van ongeveer 1 meter diep. De hoeveelheid water in de atmosfeer is daarmee vergeleken klein. Alle waterdamp in de atmosfeer uitgeregend levert wereldwijd maar een laagje water op van 2,5 cm. Jaargemiddeld is daarom de hoeveelheid neerslag vrijwel gelijk aan de verdamping.

Voor verdamping is energie nodig. Met de energie om 1 meter water te verdampen kun je een jaar lang een lamp van 80 Watt op iedere vierkante meter op aarde laten branden. De energie voor verdamping wordt geleverd door de zon en de warmtestraling van de atmosfeer.

Door de opwarming neemt de warmtestraling toe doordat de atmosfeer warmer en vochtiger wordt. Deze toename is 7,3 Watt per vierkante meter per graad opwarming (Figuur 2). Daarmee kan verdamping en dus de neerslag met bijna 10% per graad opwarming toenemen. Echter 5,6 Watt per vierkante meter wordt door het oppervlak als warmtestraling weer uitgestraald waardoor er maar 1,7 Watt per vierkante meter overblijft, genoeg om de neerslag met 2% per graad opwarming te laten toenemen.

Door de opwarming gaat het over de hele wereld gemiddeld meer regenen. Maar niet overal valt meer regen. Ruwweg geldt dat natte gebieden natter worden en droge gebieden droger (Figuur 3).

In de zomer bijvoorbeeld verwachten we dat het meer gaat regenen in Scandinavië en minder in Zuid-Europa. Voor Nederland is de verandering erg onzeker. Afhankelijk of we vaker wind uit oostelijke richtingen gaan krijgen neemt de zomerneerslag af of verandert er niet veel.

 

KNMI-klimaatbericht door Frank Selten

 

Figuur 1. Berekende verandering door klimaatmodellen in de hoeveelheid waterdamp in de atmosfeer en de hoeveelheid neerslag in een wereld die opwarmt door een toename van broeikasgassen.
Figuur 1. Berekende verandering door klimaatmodellen in de hoeveelheid waterdamp in de atmosfeer en de hoeveelheid neerslag in een wereld die opwarmt door een toename van broeikasgassen.
Figuur 2. Berekende verandering door klimaatmodellen in de energiestromen aan het aardoppervlak. De restterm is de som van de overige warmtestromen.
Figuur 2. Berekende verandering door klimaatmodellen in de energiestromen aan het aardoppervlak. De restterm is de som van de overige warmtestromen.
Figuur 3. Berekende verandering in neerslag door klimaatmodellen voor 2081-2100. In de gestippelde gebieden komen de verschillende modellen goed met elkaar overeen. Bron: IPCC 5de assessment report WG1 Chapter 12.
Figuur 3. Berekende verandering in neerslag door klimaatmodellen voor 2081-2100. In de gestippelde gebieden komen de verschillende modellen goed met elkaar overeen. Bron: IPCC 5de assessment report WG1 Chapter 12.

Recente nieuwsberichten

  1. Hoe noordelijk landijs communiceert met Antarctica

    Hoewel de afstand tussen de poolgebieden op het noordelijk en zuidelijk halfrond vele duizenden k...

    19 januari 2021 - Nieuwsbericht
  2. Wereldtemperatuur 2020 op eerste of tweede plaats

    De Wereld Meteorologische Organisatie concludeert uit vijf verschillende datasets dat de gemiddel...

    18 januari 2021 - Nieuwsbericht
  3. Winterse kansen door opwarming in stratosfeer

    Wordt het nog koud deze winter? De langetermijnverwachtingen voor de winter krijgen steeds meer a...

    14 januari 2021 - Nieuwsbericht
  4. Afsmelten van de grote ijskappen gaat sneller dan ooit

    Door de opwarming van de aarde neemt het afsmelten van gletsjers en ijskappen snel toe. Dit zorgt...

    12 januari 2021 - Nieuwsbericht
Toon alle pers- & nieuwsberichten